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A simplified force equation for coaxial cylindrical
magnets and thin coils

Will Robertson, Romain Ravaud, Ben Cazzolato, and Anthony Zander

Abstract—A recently-published equation for calculating the
force between coaxial cylindrical magnets is presented in simpli-
fied form. The revised equation is now very compact: it is defined
in terms of fewer parameters and contains fewer terms than the
original equation. The new equation is purely real, unlike the
original which contained imaginary components. As a result of
the simplifications, the new equation is demonstrably faster to
evaluate than the original, improving its utility for parametric
optimisation. A reference implementation is provided for Matlab
and Mathematica.

I. INTRODUCTION

Ravaud et al. [1] recently published an expression for the
forces between two cylindrical magnets or thin coils (which
are equivalent electromagnetically). In this paper, we will
present a simplification of their equation. This simplification
results in a faster execution time and more convenient calcu-
lation with numerical software.

A reference implementation of the equations derived in this
paper is available (http://github.com/wspr/magcode) for both
Matlab and Mathematica; see respectively the files ‘ravaud-
cylmag.m’ and ‘ravaud-cylmag.nb’ in the ‘examples/’ direc-
tory. The graphs presented in this paper have been generated
with these files; this work is therefore reproducible and may
be used by others without problems stemming from imple-
mentation details.

In Section II, we will briefly discuss previous work in this
area; Section III defines the geometry of the system under
investigation; Section IV contains the simplifications and the
presentation of the new equation; and Section V contains
comments on the numerical evaluation of the equation with an
example implementation of the previous and the new equation
to demonstrate their equivalence.

II. BACKGROUND

Although an analytical form of the force between cuboid
magnets has been known for some time [2], a similar closed-
form solution for the force between cylindrical magnets has
proved more difficult to obtain. A fast and accurate model to
calculate cylindrical magnetic forces is useful for optimising
such devices as vibration isolation systems with magnetic
springs for which coarse force-displacement approximations
are often used [3], [4], [5]. Having an expression to calculate
the force between cylindrical magnets also allows one to
calculate the force between ring magnets using the principle
of superposition; ring magnets are widely used for magnetic
bearings, and their forces until recently have been modelled
using semi-numerical evaluation of integral equations based
on the Coulombian charge model [6].

In previous literature on modelling the forces between
cylindrical magnets, Nagaraj [7] investigated and compared the
force between cuboid and cylindrical magnets with arbitrary
displacements using numerical integration to calculate his
results; Furlani [8] calculated the force between radially-
aligned ring magnets using a numerical discretisation of the
magnet volume using theory developed in more detail in his
book [9]. Hull et al. [10] presented integral equations for
calculating the radial and axial forces between a cylindrical
magnet and a superconductor, which is equivalent to the force
between two cylindrical magnets, and Bassani [11] presented
integral equations for calculating the radial and axial forces be-
tween ring magnets. Such integral equations require numerical
methods to evaluate. Most recently, Ravaud et al. [1] derived
a closed-form solution using elliptic integrals for the forces
between radially-aligned cylindrical magnets; their result is
the most straightforward method yet presented for calculating
forces in this configuration.

The equation for the force between cylindrical magnets can
also be used to calculate the force between thin coils with
many axial turns. In related work, Kim et al. [12] presented
a different integral equation for the radial force between
(single-turn) circular coils with eccentric radial displacement,
for which further application of their results is required to
calculate the forces between coils with many turns, such as
for the system examined here. An expression for the force
between thin coaxial coils has also been published by Babic
et al. [13]; it too is more complex than the expression to be
presented in the current work.

III. GEOMETRY

The system consists of two cylindrical magnets or current-
carrying coils which have a relative axial displacement be-
tween them but are aligned radially, as shown in Figure 1.

r1 r2

Fz

z
z1 z2 z3 z4

Magnet 1 Magnet 2

Fig. 1. Cross section of the system composed of coaxial cylindrical
magnets or coils with a generate force on the second magnet (or coil). Axial
displacement between the magnets may be positive or negative, and their
volumes may even overlap in the case of a magnet located inside a coil.

http://github.com/wspr/magcode
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The original equation of Ravaud et al. [1] defines the axial
force Fz in terms of ten auxiliary parameters (ω, τ , ε, ν, ι,
β, κ, γ, δ, ψ) which are defined in terms of the geometric
constants of the system [1, Table III]. With a recasting of the
parameters in the original paper, the new equations presented
in this paper are defined using the following five terms:

c1 = zi − zj , c4 =
√
c21 + c22,

c2 = r1 − r2, (1)
c3 = r1 + r2, c5 =

√
c21 + c23
c4

,

where r1 and r2 are the magnet/coil radii and z1, . . . , z4 are
the axial positions of the magnet/coil faces (see Figure 1).
Indices i and j refer to the occurence of c1 within a double
summation (see equation (4) for example). The magnets have
magnetisation J1 and J2 respectively in the positive axial
direction; that is, for positive J1 and J2 the magnets are in
attraction.

The geometry and force equations in this paper are defined
to calculate the force on the second magnet/coil due to the
first; the sign may be reversed to obtain the force on the first
magnet/coil due to the second.

IV. SIMPLIFICATION OF THE FORCE EXPRESSION

In this section, we will present the simplifications made to
the equation of Ravaud et al. [1, Eqs (22)–(24)], which we
refer to as the ‘original equation’ herein.

A. Incomplete to complete elliptic integrals

In this paper, the elliptic integrals are defined in terms of
their parameter m rather than their modulus k =

√
m. Both

representations are equivalent, but it is more common for
numerical methods (such as found in Mathematica and Matlab)
to use the parameter form instead of the modulus form.

The incomplete elliptic integrals in the original equation
can be transformed into complete elliptic integrals by using
the following recipocal-modulus transformations [14, adapted
below in Appendix A], where F (φ |m) and E(φ |m) are the
incomplete integrals of the first and second kind, respectively:

(2)F

(
arcsin

(√
1

m

)∣∣∣∣∣m
)

=
1√
m
K

(
1

m

)
,

(3)
E

(
arcsin

(√
1

m

)∣∣∣∣∣m
)

=
√
mE

(
1

m

)
+

[
1√
m
−
√
m

]
K

(
1

m

)
.

Using the complete forms of the elliptic integrals leads to
faster execution and a simpler expression. It is more common
to find numerical software to calculate the complete elliptic
integrals but not the incomplete ones.

B. Initial replication of the original equation

Using the parameters (1) and rewriting and simplifying the
original equation using the transformations (2)–(3), the axial
force Fz between two cylindrical magnets or coils is given by

(4)Fz =
J1J2
4µ0

2∑
i=1

4∑
j=3

c1c4fz[−1]i+j ,

where J1 and J2 are the magnetisations of the magnets in the
positive z direction, µ0 = 4π × 10−7 NA−2 is the magnetic
constant, and fz is an intermediate function given by

(5)

fz = i
[
c25 − 1

] [
K
(
c25
)

+
3
√
c5
K

(
1

c25

)]
+ 2i

[
E
(
c25
)
− c5E

(
1

c25

)]
+
c22 + c23
c24

K
(
1− c25

)
− 2

[
c3
c4

]2
Π

(
1−

[
c3
c2

]2 ∣∣∣∣∣ 1− c25
)

,

where i =
√
−1 and K(m), E(m), and Π(n |m) are the

complete elliptic integrals of the first, second, and third kind,
respectively.

The simplified equation (5) has been re-derived from the
original derivation of Ravaud et al. [1] and hence differs in
form from their published equation.

C. Removal of zero-valued elliptic integral terms

Further simplification of equation (5) is possible. This
expression for fz , like the original, returns complex values
but only the real component <(fz) is used for the force
calculation; any imaginary terms are simply ignored. Consider
parameters (1); since c23 > c22 it follows that c25 > 1 and
0 < 1/c25 < 1. But the elliptic integral K(m) is purely real
for 0 ≤ m ≤ 1 and hence <

(
iK
(
1/c25

))
is always zero.

Similarly for the elliptic integral of the second kind, such that
<
(
iE
(
1/c25

))
= 0. Therefore equation (5) can be reduced by

eliminating the elliptic integrals with parameter 1/c25 to obtain
the expression

(6)
fz = i

[
c25 − 1

]
K
(
c25
)

+ 2iE
(
c25
)

+
c22 + c23
c24

K
(
1− c25

)
− 2

[
c3
c4

]2
Π

(
1−

[
c3
c2

]2 ∣∣∣∣∣ 1− c25
)

.

D. From complex-valued to purely real output

Equation (6) can still be transformed into a more convenient
form by eliminating the complex components of the equation
in order to make it purely real. The complex expressions for
K
(
c25
)

and E
(
c25
)

can be rewritten in real and imaginary parts
based on the following identities [14, §19.7.3] which hold for
m > 1:

(7)K(m) =
1√
m

[
K

(
1

m

)
− iK

(
1− 1

m

)]
,
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(8)
E(m) =

√
m

[
E

(
1

m

)
−
[
1− 1

m

]
K

(
1

m

)]
+ i

[√
mE

(
1− 1

m

)
− 1√

m
K

(
1− 1

m

)]
.

Using equations (7) and (8), the real components of the
complex terms in equation (6) can be expressed directly as

(9)
<
(

i
[
c25 − 1

]
K
(
c25
)

+ 2iE
(
c25
))

=

[
c5 +

1

c5

]
K

(
1− 1

c25

)
− 2c5E

(
1− 1

c25

)
.

The now purely-real expression for fz in simplified form is

fz =

[
c5 +

1

c5

]
K

(
1− 1

c25

)
− 2c5E

(
1− 1

c25

)
+
c22 + c23
c24

K
(
1−c25

)
−2

[
c3
c4

]2
Π

(
1−
[
c3
c2

]2 ∣∣∣∣∣ 1−c25
)

.

(10)

E. Elliptic integrals with negative parameter

The latter two terms in equation (10) cannot easily be
calculated in some mathematical software (for example, at
time of writing, Matlab), as many numerical solutions for
the elliptic integrals assume input parameters between zero
and unity, whereas 1 − c25 < 0. (The transformation of
equation (9) avoided a similar problem for the first two terms
of equation (10).) For the complete elliptic integral of the first
kind, the imaginary-modulus transformation (see equation (25)
in Appendix B) is used to convert it into a more easily
calculable form:

(11)K(m) =
1√

1−m
K

(
m

m− 1

)
, m < 0 .

For the complete elliptic integral of the third kind, the follow-
ing transformation can be used to calculate values for Π(n |m)
when m < 0 and n < 0 (Appendix B, equation (29)):

(12)
Π(n |m) =

1

[m− n]
√

1−m

[
mK

(
m

m− 1

)
− nΠ

(
m− n
m− 1

∣∣∣∣ m

m− 1

)]
.

Applying the imaginary-modulus transformations (11) and
(12) simplifies equation (10) yet further as the two elliptic
integrals of the first kind now take the same parameter 1−1/c25.
We now have for the final simplified expression

(13)Fz =
J1J2
2µ0

2∑
i=1

4∑
j=3

a1a2a3f
′
z [−1]

i+j ,

where the intermediate expression is

(14)f ′z = K(a4)− 1

a2
E(a4) +

[a21
a23
− 1
]

Π

(
a4

1− a2

∣∣∣∣ a4) ,

where the redefined parameters are

a1 = zi − zj , (15)

a2 =
[r1 − r2]

2

a21
+ 1, (16)

a3 =

√
[r1 + r2]

2
+ a21, or a3 =

√
4r1r2
a4

, (17)

a4 =
4r1r2

[r1 + r2]
2

+ a21
, 0 < a4 ≤ 1. (18)

As a result of the simplifications presented here, equa-
tion (13) contains one-third the number of terms compared
to the original equation (three instead of nine) and is defined
in terms of four instead of ten parameters. Additionally, the
complete elliptic integrals of the first, second, and third kind
can all be calculated simultaneously with a single iteration
of the arithmetic-geometric mean approach [14, §19.8(i)], as
they all take the same parameter a4. This makes equation (14)
particularly efficient to implement.

V. NUMERICAL EVALUATION OF THE AXIAL FORCE

A. Singularities

Numerical singularities occur when an expression is mathe-
matically continuous but terms within the expression approach
infinity; care must be taken when evaluating such expressions
numerically. There are two numerical singularities in equa-
tion (13). The first occurs when the radii are equal such that
a2 = 1 and the following term disappears as Π(±∞|m) = 0:

(19)
[a21
a23
− 1
]

Π

(
a4

1− a2

∣∣∣∣ a4) = 0, a2 = 1 .

The second numerical singularity occurs when the mag-
nets/coils have coincident faces such that a1 = 0 for some
values of i and j in the double summation. In this case,
new parameter a2 contains the coefficient 1/a21 = 1/0.
This singularity can be avoided entirely since the coincident
faces generate no component of the force between them, and
hence the entire intermediate expression within the summation
a1a2a3f

′
z can be defined as zero when a1 = 0.

B. Implementation efficiency

Evaluated in Mathematica (including branching to avoid sin-
gularities), the new equation (13) took 0.26 ms on a notebook
computer to calculate the force at a single location (10000
averages with random input variables). The original equation
in the same configuration took 2.2 ms to evaluate, which is
over eight times slower than for the new equation. For re-
searchers performing design optimisations with variations over
a large number of parameters, such improvements are useful
in minimising the total computation time of the optimisation
process.

C. Example

The equivalence of the simplified equation is demonstrated
with an example in which a magnet of length h2 = z4− z3 is
located axially centred within a coil of length h1 = z2−z1 and
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r1 20 mm
h1 20 mm
J1 µ0NI/h1
N 100
I 1 A

r2 15 mm
h2 15 mm
J2 1 T

−40 −20 20

−1

−0.5

1

Displ. x, mm

Axial force Fz , N

New
Old

Fig. 2. An example of the force generated on a cylindrical magnet by a coil.
Displacement is defined as zero when the coil and magnet are axially centred
with respect to each other. The new equation is implemented in Matlab vs the
old equation in Mathematica to ensure the two are numerically equivalent.

displaced in equal amounts in the positive and negative axial
directions. That is, axial displacement x between the centres
of the magnet and the coil is defined as

(20)x = 1
2 [z3 + z4]− 1

2 [z1 + z2] .

Figure 2 shows the parameters used in the simulations and
displays the respective outputs calculated with the old equation
using Mathematica and the new equation using Matlab. These
simulations are performed in the example files mentioned in
Section I.

In the simulation results, the magnet experiences zero
force when it is axially centred inside the coil. With axial
displacement, a restoring force is applied by the coil in the
opposite direction of displacement. As shown in Figure 2, the
results are identical for both the original and the simplified
equations.

VI. CONCLUSION

We have presented a simplification of Ravaud et al.’s [1]
closed-form equation for calculating the force between
radially-aligned cylindrical magnets. The simplified equation
is defined with fewer than half the number of parameters,
contains one-third of the terms, and its output is purely real
whereas the original equation evaluated to a complex value
of which the imaginary component was ignored. Confirmation
has been shown that the new expression gives the same results
and is almost an order of magnitude faster due to its simpler
form. This new expression has been implemented in Matlab
and Mathematica and the code is freely available for use by
the general public.
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or more directly, in terms of parameter m > 1 and phase β,

F (β |m) =
1√
m
F

(
arcsin(

√
m sinβ)

∣∣∣∣ 1

m

)
. (23)

The second elliptic integral has a similar transformation,

E

(
φ

∣∣∣∣ 1

m

)
=

1√
m

[
E(β |m)− [1−m]F (β |m)

]
, (24)

or, again given m > 1 and some β,

E(β |m) =

[
1√
m
−
√
m

]
F

(
arcsin

(√
m sinβ

) ∣∣∣∣ 1

m

)
+
√
mE

(
arcsin(

√
m sinβ)

∣∣∣∣ 1

m

)
.

B. Imaginary-modulus transformations

The following material is adapted from Ref. [14, §19.7.5].
The imaginary-modulus transformations are used to transform
elliptic integrals with negative parameter (i.e., when modulus
k =
√
m is imaginary) into a form with 0 ≤ m ≤ 1. For the

first elliptic integral with m > 0:

(25)F (φ | −m) =
1√

1 +m
F

(
θ

∣∣∣∣ m

1 +m

)
,

where θ is defined by

(26)sin θ =
sinφ
√

1 +m√
1 +m sin2 φ

.

When looking at the complete elliptic integrals, φ = π/2
and the imaginary-modulus transformation (25) reduces to
Equation (11).

The imaginary-modulus transformation for the second ellip-
tic integral is included for completeness, again for m > 0:

E(φ | −m) = − m sin θ cos θ√
1 +m cos2 θ

+
√

1 +mE

(
θ

∣∣∣∣ m

1 +m

)
.

(27)

Substituting φ = π/2 into equation (27) produces the simpler
transformation for the complete elliptic integral of the second
kind:

(28)E(−m) =
√

1 +mE

(
m

1 +m

)
.

Finally for the elliptic integral of the third kind the
imaginary-modulus transformation for m > 0 is:

(29)
Π(n; φ | −m) =

1

[n+m]
√

1 +m

[
mF

(
θ

∣∣∣∣ m

1 +m

)
+ nΠ

(
n+m

1 +m
; θ

∣∣∣∣ m

1 +m

)]
,

which reduces to Equation (12) when φ = π/2 in the complete
form.


	Introduction
	Background
	Geometry
	Simplification of the force expression
	Incomplete to complete elliptic integrals
	Initial replication of the original equation
	Removal of zero-valued elliptic integral terms
	From complex-valued to purely real output
	Elliptic integrals with negative parameter

	Numerical evaluation of the axial force
	Singularities
	Implementation efficiency
	Example

	Conclusion
	References
	Appendix
	Reciprocal-modulus transformations
	Imaginary-modulus transformations


