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Abstract

This paper presents an analysis of a magnetic levitation system for vibration isolation. A
non-dimensional analysis of the magnetic support is considered and it is shown analytically
that for cubical magnets the ratio of force to displacement is directly proportional to face
area. The arrangement of magnets examined uses a negative stiffness element to reduce the
natural frequency of the suspension. Design criteria are imposed on the system to satisfy
mass loading, bandwidth of the required isolation, expected magnitude of the vibration
disturbance and required robustness of the system. The vibration response of a system
designed to satisfy these requirements is compared to an equivalent linear system and is
shown to become increasingly nonlinear as the system moves towards instability.
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1 Motivation

The main mechanisms of vibration isolation have been researched in detail and are
now well known [1]. For a single degree of freedom system, reducing the stiffness
has the effect of lowering the resonance frequency, while increasing the damping
reduces the amplitude of the resonance peak to the detriment of isolation at higher
frequencies. These adjustments can be made by modifying the physical structure or
by applying displacement or relative velocity active feedback control.

Absolute velocity feedback control creates ‘skyhook’ damping, in which the res-
onance peak is reduced without affecting the vibration transmission at higher fre-
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quencies [2]. For an ideal single degree of freedom system, this technique is limited
by instability caused by time delays in the controller [3, 4].

Semi-active methods have also been developed to approximate this technique when
fully active control is undesirable [5–7]. Semi-active control has the advantages of
robustness and low power requirements, especially when large forces would be
required for active control.

Reducing the stiffness of the support decreases the resonance frequency of the sys-
tem, which increases the bandwidth of vibration isolation. This will improve the
vibration isolation of the system over the application of sky-hook damping, espe-
cially at low frequencies. For a given mass, this can be achieved by reducing the
stiffness of the support, or by adding a negative stiffness element in parallel with
the system [8, 9]. Again, this can be implemented by passive, active or semi-active
methods. Negative displacement or positive acceleration feedback can be used in a
fully active system. In the semi-active case, many methods exist to dynamically ad-
just the stiffness depending on the support being used; an example has been demon-
strated by Kidner and Brennan [10].

In a conventional mass–spring system, the static deflection increases as the stiffness
of the support is reduced, and a lower limit on the stiffness is imposed by constraints
on the allowable displacement. Less typical supports can exhibit stiffness that varies
nonlinearly with displacement; even local regions of zero stiffness are possible. An
example of a system with such behaviour is a parallel connection of vertical and
inclined springs [11–14], which has an approximately cubic force vs. displacement
characteristic; localised zero stiffness occurs at zero deflection, which is termed
‘quasi–zero stiffness’. The use of buckling beams as a negative stiffness element
to achieve quasi–zero stiffness has also been implemented in practice [15, 16].
An example pertinent to this research is the recent analysis by Carrella et al. of a
quasi–zero stiffness system using (positive stiffness) linear springs in parallel with
negative stiffness magnetic springs [17]. Further detail into the field of nonlinear
passive vibration isolators is given in the recent review by Ibrahim [18].

This paper examines another system that exhibits localised zero stiffness: a pair
of fixed magnets that supports a mass against gravity by respectively repelling the
mass from below and attracting it from above, as shown in Figure 1. This arrange-
ment of magnets has seen some previous attention [19–21]. The force vs. displace-
ment characteristic for this system has previously been approximated by a quadratic
polynomial, valid only for small variations in the gaps between the magnets.

The cubic force curve is more useful because it creates a stable inflection point with
localised zero stiffness; in contrast, a quadratic-type spring is marginally stable at
its quasi–zero stiffness position and cannot be operated about this point. Nonethe-
less, the magnet arrangement is worth studying as a mechanism to achieve low
stiffness, since this device reduces the stiffness in all three translational degrees of
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Fig. 1. Schematic of a magnetic spring with quasi–zero stiffness at h = 0 to isolate dis-
placement x from disturbance vibration y. Large arrows indicate direction of polarisation
of the magnets. In this paper, cubical magnets are used with side length a, distance 2ad
between the centres of the fixed magnets, and displacement of the floating magnet from
the zero stiffness position ah. Rest position at positive h (upwards) corresponds to unstable
equilibrium; negative h (downwards) is stable.

freedom. As well as its use to design low frequency isolation mounts, this idea can
have particular application in support structures where a reduction in stiffness is
desired to mitigate a vibration problem that has been discovered after its construc-
tion. The noncontact nature of the force between the magnets allows their easy
attachment to an existing structure.

The structure of the paper is as follows. The exact equation for the forces between
two cubical magnets is presented in section 2 and used to calculate the exact and
approximate force vs. displacement profiles of the quasi–zero stiffness magnetic
spring. In section 3, the criteria that govern the behaviour of a vibration isolation
device are applied to the magnetic spring and suitable ranges for the design param-
eters are found to achieve the design goals. Finally, section 5 analyses the dynamic
behaviour of the spring to ensure that the isolation capabilities are not compromised
by the nonlinear characteristics of the magnetic spring.

2 Magnet forces

The force that is generated between parallel cuboid magnets (that is, with faces
orthogonal but not necessarily equal) can be calculated with the formulation of
Akoun and Yonnet [22], for magnet geometries depicted in Figure 2. Bancel [23]
published an equivalent equation that is algorithmically easier to apply for complex
magnet geometries and multipole arrays.

For this work, the original expression of Akoun and Yonnet [22] is simplified for
cubical magnets with a vertical offset; that is, magnet sizes a = b = c = A = B = C
and only vertical relative displacements, such that α = β = 0. The distance be-
tween the magnet centres with respect to the size of the magnets is expressed as a
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Fig. 2. Geometry for the expression by Akoun and Yonnet [22] to calculate the forces
between two parallel cuboid magnets with magnetisations in the vertical direction, distance
between their centres (α,β ,γ), and magnet sizes as shown.

normalised length:
l = γ/a. (1)

After some manipulation of the original equation given these simplifying assump-
tions, the force Fm(a, l) on the second magnet in attraction (that is, for magnets with
polarisation in the same direction) can be shown to be directly proportional to the
facing area of the magnets, a2, for a fixed normalised displacement, l, between the
magnets:

Fm(a, l) = a2 fm(l) . (2)

For magnets in repulsion, the expression has opposite sign. The derived expression
for the normalised force fm(l) is given in equation (A.1) in the appendix. The a2

relationship shown in equation (2) is interesting because it is not evident from Ak-
oun and Yonnet’s original equations that such a simplification (for various subsets
of magnet geometries such as the one considered here) is possible.

The stiffness between two cubical magnets can be calculated by differentiating the
force expression in equation (2) with respect to vertical displacement γ = al and
can be shown to be proportional to the magnet size a:

Km(a, l) =
∂

∂γ
Fm(a, l) =

1
a

∂

∂ l
a2 fm(l) = akm(l) . (3)

The derived expression for the normalised stiffness km(l) is given in equation (A.3)
in the appendix.

A ‘quasi–zero stiffness’ magnetic spring consists of an attracting magnetic pair
above a repelling magnet pair as shown in Figure 1. Parameter ad is the gap be-
tween the centres of the magnet pairs at quasi–zero stiffness, and x = ah is the
static displacement of the floating mass about the centre line between the magnets.
The parameters d and h are referred to as normalised magnet gap and normalised
magnet displacement, respectively. The force due to the lower magnet in repulsion
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is

Frepl(a,d,h) =−Fm(a,ad +ah) (4)

=−a2 fm(d +h) , (5)

and the force due to the upper magnet in attraction is

Fattr(a,d,h) = Fm(a,−ad +ah) (6)

= a2 fm(−d +h) . (7)

The total force on the floating magnet, Fz(a,d,h), is a superposition of Frepl(a,d,h)
and Fattr(a,d,h), yielding

Fz(a,d,h) = Frepl(a,d,h)+Fattr(a,d,h) (8)

= a2[− fm(d +h)+ fm(−d +h)] (9)
def= a2 fz(d,h) . (10)

The stiffness of the system can be similarly expressed as

Kz(a,d,h) = akz(d,h) , (11)

where

kz(d,h) =−km(d +h)+ km(−d +h) . (12)

The force fz(d,h) and stiffness kz(d,h) of the magnetic spring are readily calculated
for values of normalised displacement and gap, h and d, from the derived expres-
sions in the appendix. However, these expressions are too complex for use in any
calculation where they must be inverted (say, finding a value of d for which a cer-
tain kz(d,h) holds). It is therefore necessary to obtain a simpler model of fz(d,h).

Previously, fz(d,h) has been modelled as a quadratic polynomial [19, 20] with
coefficients that vary with magnet gap:

fz(d,h)≈ q2(d)h2 +q0(d) . (13)

Over small displacement ranges this approximation yields adequate results, but the
resulting model is dependent on the gap between the magnets and local to the dis-
placement range used to fit the model.

A more accurate result (which is also accurate over larger displacement ranges) can
be achieved with a quartic polynomial approximation,

fz(d,h)≈ c4(d)h4 + c2(d)h2 + c0(d) , (14)

but the same criticisms hold as for the quadratic polynomial model: the resulting
model is not general; furthermore, if the model approximation is to also represent
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changes in magnet gap d, the functions c0(d), c2(d), and c4(d) require high-order
polynomials to represent the variation sufficiently well.

Due to the complexity of the expression, a simpler approximation of the normalised
force fm(l) can be found by fitting the constant coefficients A, B, and possibly n in
the empirical approximation for the forces between two magnets

fm(l)≈ A
[B+ l]n

. (15)

Xu and Tamura [24] used the more complicated approximation

fm(l)≈ D
[

A
B+ l

]n

+C (16)

although in this case the additional complexity does not justify the slight increase
in accuracy this expression may offer.

Bonisoli and Vigliani [25, 26] used n = 3 in their work, and Piombo et al. [27]
recommended either n = 2 or n = 4. The values for n they selected were based on
the best fit curves of the forces for the specific geometry of their magnets in each
case. However, n is not restricted to integer values and does not have to be chosen
a priori to the curve fitting.

A least squares fit is performed with equation (15) varying all three parameters A,
B, and n over the range 2 ≤ h ≤ 5 to achieve an approximation of equation (A.1).
Over the displacement range used to fit the model, modelling errors of less than 1%
are achieved. (Without loss of generality, the magnetisation of each magnet, J, is
taken as unity.) Including displacements outside of this range (especially 1 < h≤ 2)
diminishes the accuracy of the fit, but is less relevant for this work: displacements
1 < h ≤ 2 generate high stiffnesses, and displacements h ≥ 5 have low supporting
forces. Both of these properties are undesirable for a vibration isolator in terms of
resonance frequency and adequate load bearing, respectively.

Figure 3 shows the approximations found with equation (15) for set values n = 3
and n = 4 (only coefficients A and B are varied); in the third curve, n has also been
allowed to range for the least-squared fit. Table 1 displays the values for all three
calculated parameters in each case. The curves for n = 2 and n = 5 produce much
greater errors than those shown in Figure 3 and have been omitted for clarity.

An empirical approximation of equation (2) for the force between two cubical mag-
nets is thus given by

Fm(a,x)≈±a2J2 6.028×105

[0.1883+ x]4.197 (17)

with force Fm(a,x) in Newtons, magnet size a and displacement x both in metres,
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Fig. 3. Modelling errors of equation (15) compared to the exact equation (A.1), for param-
eters shown in Table 1.

n A B

3 6.580×104 −0.5796

4 4.071×105 0.0607

4.197 6.028×105 0.1883

Table 1
Best fit parameters for equation (15). Fixed integer values of n were chosen for the first
two cases, and the latter value best fits the model by varying all three parameters. Note that
these are unitless parameters.

and magnetisation J in Tesla, where the expression is positive for magnets in repul-
sion and negative for magnets in attraction.

Figure 4 shows the model of the magnetic system using equation (15) to calculate
the force due to the repelling and attracting magnets separately:

fz(d,h)≈ A[B+d +h]−n +A[B+d−h]−n , (18)

where A, B, and n are the best-fit parameters previously discussed. This solution
is both simpler in form and more accurate than the polynomial models of equa-
tions (13) and (14). It is also much easier to invert numerically than the exact equa-
tion (10), although note that equation (18) still cannot be algebraically inverted;
this is not an issue for the work to be discussed in the following sections. The nor-
malised stiffness can be approximated by differentiating equation (18) with respect
to h: (as shown previously in equation (3))

kz(d,h)≈ nA[B+d +h]−n−1 +nA[B+d−h]−n−1. (19)
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Fig. 4. Normalised force fz(d,h) vs. displacement h curves of a quasi–zero stiffness mag-
netic system for a range of normalised gap d (the stiffness is zero at h = 0). Single points
correspond to the exact solution; solid lines correspond to the approximation given by equa-
tion (15).

In this section, a model of the magnet forces was presented that is accurate over
large relative displacements. Despite the fact that the vibration disturbance will oc-
cur in small magnitudes relative to the size of the magnet dimension, it is important
to model the magnet forces accurately over a large displacement range so that the
design evaluations in the next section may be applied over variations in magnet
gap.

3 Design criteria

In the previous section, a magnetic system was introduced with an exact expression
and various approximations for calculating the force vs. displacement characteris-
tics for a range of system designs. It is proposed that this system is suitable for a
vibration isolation platform due to the possibility of low inherent stiffness of the
design. However, the stiffness is dependent on the load that is being supported, and
the magnetic arrangement must be designed for this purpose. In this section, con-
straints are imposed on the system parameters to satisfy these criteria and a design
principle developed.

The normalised equilibrium position of the system hq can be found by equating the
magnet force at equilibrium fq with the load due to gravity and inverting numeri-
cally:

fq(a,d,M) = fz
(
d,hq

)
= Mg/a2. (20)

A positive displacement of the mass (h≥ 0) is unstable, and so equation (20) must
be solved such that hq < 0. Figure 5 shows the equilibrium position hq varying over
a and d for a system of mass M = 0.5kg.
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Fig. 5. Map of the normalised equilibrium position over varying magnet size a and nor-
malised magnet gap d for a system with mass M = 0.5kg.

The normalised equilibrium position hq of a mass can be approximated from the
polynomial fits of the force curve by equating, for example, equation (14) with the
force due to gravity and solving for h. However, the more accurate approximation
equation (18) cannot be algebraically rearranged to solve for h; hence, solutions
based on that equation must be obtained numerically.

The magnet size and gap must be chosen based on hq to ensure that the spring is
of sufficient stiffness to support a desired load but not so strong that the supported
mass cannot be in equilibrium in the stable region of the spring. A ‘static deflection
criterion’ is defined to achieve these constraints:

fz(d,0) < Mg/a2 < fz(d,−d +1) , (21)

which is shown graphically in Figure 6. This criterion is depicted in Figure 7 as a
region over the parameters a and d for three mass loads. The shape and location of
the regions show that for a fixed magnet gap, larger magnets are required to support
larger loads.

Assuming that linearisation is appropriate to model the vibration response of the
system, the equivalent linear stiffness at equilibrium, Kq, must satisfy the resonance
frequency criterion: Kq = Kz

(
a,d,hq

)
≤ω2

d M, where ωd is the maximum allowable
resonance frequency. From equation (19), this requirement can be formulated as

[
B+d +hq

]−n−1 +
[
B+d−hq

]−n−1 ≤
ω2

d M
anA

. (22)

This criterion is shown for a range of desired nominal stiffnesses in Figure 8. As
the resonance frequency decreases, larger magnets are required to support the load
with a small force gradient.

Finally, the amplitude of the input vibration must be smaller than the physical
bounds of the system. This can be visualised on a normalised force/displacement
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Fig. 7. Regions of a and d satisfying the static deflection criterion of equation (21) for a
range of masses. Darker sections denote overlap of the regions in the overlay plot.

plot as shown in Figure 6. For a maximum (absolute) displacement, δ , of the mass,

hq−δ/a≥−d +1, (23)
hq +δ/a <−ε, (24)

where aε is the tolerance of the closest allowable distance to the (marginally sta-
ble) quasi–zero stiffness position that the system can operate. Equation (23) is a
maximum displacement criterion to ensure that the lower displacement bound lies
above the face of the fixed lower magnet. Equation (24) is a stability criterion to
provide a buffer region to ensure that the moving magnet is not perturbed past the
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Fig. 8. Regions of a and d satisfying the resonance frequency criterion of equation (22) for
a range of allowable resonance frequencies and a mass M = 0.5kg. Darker sections denote
overlap of the regions in the overlay plot.

quasi–zero stiffness position into the unstable zone.

These latter constraints impose only small limits on the design of the system. The
maximum displacement criterion, shown in Figure 9 as a region over the parameters
a and d for a range of δ , limits the lower size of the magnet.

Note that the maximum displacement of the spring will not be symmetric with
input displacement due to the softening spring stiffness. Without loss of generality,
however, it is possible to represent the maximum displacement in the stability and
maximum displacement criteria (equations (23) and (24)) with the same symbol.

The stability criterion is governed by two parameters, δ and ε , which are varied in
Figures 10 and 11 respectively. Again, this criterion only has a small effect on the
constraint region, but it is an important effect. Because the stability criterion lim-
its the minimum distance between the quasi–zero stiffness position and the equi-
librium position, this prevents the spring from reaching the very low equilibrium
stiffnesses found just below the quasi–zero stiffness position.

The introduced criteria may be simultaneously satisfied for some specified values of
mass, resonance frequency, and displacement range (M, ωd , and δ ) by varying the
free parameters magnet size a and magnet gap ad. The shared region of the criteria
previously introduced (equations (21) to (24)) are shown in Figure 12 for various
combinations of supported mass and resonance frequency. This figure presents a
complete design map that shows how the techniques presented in this paper can be
used for speculative design work and optimisation.
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Fig. 9. Regions of a and h satisfying the maximum displacement criterion of equation (23)
for a range of disturbance displacements δ and a mass M = 0.5kg. Darker sections denote
overlap of the regions in the overlay plot.
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Fig. 10. Regions of a and d satisfying the the stability criterion of equation (24) for a
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of δ = 5mm. Darker sections denote overlap of the regions in the overlay plot.
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Fig. 11. Region of a, d satisfying the stability criterion of equation (24) for a range of dis-
turbance displacements δ and a normalised displacement tolerance ε = 0.1. Darker sections
denote overlap of the regions in the overlay plot.

4 Measure of stiffness reduction

In the previous section, ranges for magnet size and magnet gap were shown to
achieve certain design criteria. It is not impossible, however, that this process could
yield a design that behaves acceptably with only a single repulsive magnet: the
magnet gap could be so large as to render the effect of the negative stiffness negli-
gible.

The total stiffness characteristic of the magnetic system is given by equation (12)
as the sum of the stiffnesses due to repulsive and attractive magnets respectively.
At equilibrium, this can be written as

Kq(a,d,M) = Krepl
(
a,d,hq

)
+Kattr

(
a,d,hq

)
= Krepl[1−κ] , (25)

where

κ
(
a,d,hq

)
=
∣∣∣∣Kattr

Krepl

∣∣∣∣ . (26)

The variable κ
(
a,d,hq

)
can be considered as the ratio of ‘stiffness reduction’

achieved by the presence of the attractive magnet. For κ = 0, the upper magnet
is providing no negative stiffness to the system; for κ = 1, the equilibrium position
is at quasi-zero stiffness and the system is marginally stable.
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Fig. 12. Regions of a, d satisfying all design criteria, demonstrating the effects of changing
the mass M and the resonance frequency ωd of the desired system. Darker sections denote
overlap of the regions in the overlay plot

Figure 13 illustrates the variation of κ over a particular design region; this plot
shows that designs achieved with larger magnet gaps have little influence from
the stiffness reducing effect of the attractive magnet. As κ tends towards one, the
resonance frequency drops dramatically as the equilibrium position approaches the
quasi–zero stiffness position (compare with Figure 5).
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Fig. 13. Contours of stiffness reduction κ due to the negative stiffness of the attractive mag-
net, shown inside the region of a, d satisfying all design criteria for parameters M = 1kg,
ωd = 5Hz, δ = 1mm, ε = 0.1.

5 Nonlinear behaviour

In section 3, constraints were imposed on the design of the magnetic system such
that a certain resonance frequency was achieved for a given mass loading. The slope
of the force vs. displacement curve at equilibrium was used as the basis for the
resonance frequency criterion. However, as the mass is perturbed from equilibrium
the stiffness of the spring changes. When designing for vibration isolation, it is
important to ensure that this nonlinearity does not produce a significant effect in
the response of the system.

A measure of the nonlinearity of the system, ηk, can be found by comparing to the
nominal stiffness the mean change in stiffness of the spring at equilibrium over its
maximum peak-to-peak displacements from equilibrium:

ηk =
∆Kz

2Kq
, (27)

where

∆Kz = Kz
(
a,d,hq +δ/a

)
−Kz

(
a,d,hq−δ/a

)
(28)

Kq = Kz
(
a,d,hq

)
. (29)

For the quadratic approximation of fz(d,h), ηk is a ratio between the maximum
displacement and the equilibrium position:

ηk ≈
δ

ahq
, (30)

and since δ/a <
∣∣hq
∣∣ for stability (recall equation (24)), it follows that the degree of

nonlinearity is directly related to the amplitude of disturbance vibration. Figure 14
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Fig. 14. Contours of nonlinearity shown inside the region of a, h satisfying all criteria for
parameters M = 1kg, ωd = 5Hz, δ = 1mm, ε = 0.1. A closeup (of the box) is shown in
Figure 15.
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Fig. 15. Zoom of Figure 14 to show the behaviour of the nonlinearity in the lower limits of
the magnetic spring.

demonstrates the manner in which ηk varies over an allowed region of design pa-
rameters, with kz(d,h) given by the exact expression of equation (12).

The nonlinearity increases both as magnet size and normalised magnet gap de-
crease. Comparing Figure 14 to Figures 5 and 13, it can also be seen that the non-
linearity increases the closer the equilibrium displacement becomes to the quasi–
zero stiffness position, and the greater the effect of the negative stiffness from the
attractive magnet.

To analyse these nonlinear effects on the vibration response of the magnetic spring,
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the system shown in Figure 1 is simulated with the dynamics

Mẍ+b[ẋ− ẏ]−Fz(a,d, [x− y]/a)+Mg = 0 (31)

where x is the displacement of the isolated mass and y is the displacement of the
external disturbance. The system is excited tonally at resonance in order to depict
the steady state response with the greatest magnitude and therefore greatest nonlin-
earity. The excitation has amplitude Ae, and is given by

y = Ae sin(ωnt) . (32)

The system parameters for the simulation are M = 0.5kg, a = 20mm, d = 3, exci-
tation frequency ωn = 3.58Hz, and equilibrium position hq is 10.4 mm below the
quasi–zero stiffness position. While the exact amount of damping present in the
system will be highly model-dependent, the damping coefficient is chosen as 5%
based on the small damping forces due to eddy current and air resistance effect
[19, 28, 29].

Figure 16 shows the steady state response of equation (31) for a range of ground
disturbance amplitudes in even increments up to Ae = 1mm. Because the excitation
is at resonance, the output displacement is greater than the input displacement. The
phase plot of the response becomes increasingly skewed as the amplitude of vibra-
tion, and hence the nonlinearity, increases; Table 2 summarises the nonlinearities
calculated using equation (27). Physically, this is interpreted as the spring being
perturbed further into the stiffer region as the mass is moved closer to the repulsive
lower magnet, which results in stronger forces as the normalised displacement in-
creases. Conversely, as the mass moves upwards, closer to the quasi–zero stiffness
position, the stiffness and force both decrease.

The results shown in Figure 16 indicate that for small magnitude disturbances the
phase plot is very similar to a linear system. As the amplitude increases, the nonlin-
ear system response increases at a slower rate than the linear spring. This slowdown
is due to a shifting of the resonance peak as the nonlinearity increases, as will be
seen later in this section.

It is important to consider the role of damping in the results shown in Figure 16.
A low damping coefficient results in a greater resonance response in the low fre-
quency range. This increase in the displacement response will also increase the
nonlinear behaviour of the spring. However, the advantage of low damping is a
very fast roll-off in vibration attenuation at frequencies above resonance. Since
the damping of the non-contact magnetic spring is very low, either the bandwidth
of excitation must lie above the resonance frequency or active sky-hook damping
must be applied in order to reduce the strong effect that the resonance has on the
low-frequency response. As previously discussed, sky-hook damping is especially
suitable for this purpose because the isolation region of the frequency response is
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Fig. 16. Phase plot of the magnetic system at steady state resonance for a range of input
disturbance amplitudes shown in Table 2. The light line is the equivalent linear response.

Ae, mm ∆Kz, N/m ηk

0.2 68 0.13

0.4 135 0.27

0.6 198 0.39

0.8 253 0.50

1.0 297 0.59

Table 2
Nonlinearity values, ηk, of the responses shown in Figure 16.

not affected.

5.1 Variance gain of the magnetic system

One metric to evaluate the response of a nonlinear system in the frequency domain
is known as the ‘variance gain’ V [30], which is calculated as a ratio of the root-
mean-square output to input signals:

V =

√
1
T

∫ T

0
x̄(t)2 dt

/
1
T

∫ T

0
ȳ(t)2 dt , (33)

where T is the time interval over which the variance gain is calculated, and x̄ and
ȳ are the mean-zero output and input displacements of the vibration isolator, re-
spectively. For linear systems, this expression simplifies to the standard formula-
tion for transmissibility. For nonlinear systems, equation (33) describes the ratio
of output to input energy for a given excitation. For the tonal input disturbance of
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Fig. 17. Variance gain at a position close to quasi–zero stiffness, for a range of excitation
amplitudes Ae, as labelled. The spring softening effect at resonance can be clearly seen as
the amplitude increases. Tabulated values of nonlinearity and maximum displacement are
shown in Table 3.

equation (32), the variance gain at the frequency of excitation is

V =
1
Ae

√
2
T

∫ T

0
x̄(t)2 dt. (34)

The variance gain allows the nonlinearity of the system to be visualised on a famil-
iar transmissibility–like plot for a range of resonant frequencies and equilibrium
positions.

Figure 17 shows the variance gain for a magnetic system with M = 0.5kg, a =
20mm, and d = 2.8 with excitation amplitude ranging from 0.1 mm to 0.5 mm.
With these parameters, the equilibrium position is 1.55 mm below the quasi–zero
stiffness position. As seen in the figure, the greater the excitation amplitude, the
greater the softening nonlinearity of the spring.

Table 3 shows some data from the simulated responses, including the maximum
displacement of the spring towards the quasi–zero stiffness position, and the non-
linearity measures ηk for each amplitude of excitation. The maximum displacement
xmax corresponds with the maximum normalised displacement hmax shown in Fig-
ure 6; as hmax tends towards zero, the motion of the magnetic spring moves closer
to the quasi–zero stiffness position. Note that the pronounced nonlinearity seen in
Figure 17 belongs to a system that is approaching its bounds of stability, reaching
0.24 mm below the quasi–zero stiffness position in its most extreme displacement.

Figure 18 shows the variance gain of the same system as the magnet gap d is in-
creased. Results are shown for excitations of both Ae = 0.1mm and Ae = 0.5mm.
Data for the simulations with Ae = 0.5mm, including nonlinearity measure ηk and
maximum displacement xmax, are shown in Table 4. Two related features are impor-
tant to note from Figure 18. The first is the large decrease in resonance frequency
as the magnet gap decreases. The second is the corresponding increase in nonlinear
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Ae, mm ∆Kz, N/m xmax, mm ηk

0.1 29.3 −1.04 0.31

0.3 57.6 −0.47 0.62

0.5 66.3 −0.24 0.71

Table 3
Nonlinearity values, ηk, and maximum displacements, xmax, of the responses shown in
Figure 17. The equilibrium stiffness is Kq = 46.6N/m. The nonlinearity can be seen to
increase with excitation amplitude. In the most extreme case, the magnetic system comes
0.24 mm from the quasi–zero stiffness position.
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100
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Fig. 18. Variance gain of the magnetic system, comparing between two excitation ampli-
tudes with varying values of magnet gap d, as labelled. Low amplitude is Ae = 0.1mm
and high amplitude is Ae = 0.5mm; shown as dashed and solid lines, respectively. The
nonlinear effect is only prominent in the case close to quasi–zero stiffness, with an exci-
tation amplitude that almost destabilises the system. Tabulated values of nonlinearity and
maximum displacement are shown for the high amplitude case in Table 4.

d Kq, N/m ∆Kz, N/m xmax, mm ηk

2.8 66.3 46.6 −0.24 0.71

2.85 138.8 145.8 −2.72 0.48

3.0 167.6 253.5 −7.80 0.33

Table 4
Nonlinearity values, ηk, and maximum displacements, xmax, of the high amplitude re-
sponses (Ae = 0.5mm) shown in Figure 18, for a range of magnet gaps, d. As the stiffness
is decreased by the upper attractive magnet, greater nonlinearity is seen for smaller magnet
gaps, as the equilibrium position moves closer to the point of quasi–zero stiffness.

behaviour as this occurs. As the equilibrium position moves away from the insta-
bility at quasi–zero stiffness, the variance gain quickly exhibits linear behaviour.
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6 Summary

This paper has analysed a magnetic spring for the purposes of load bearing with
low stiffness. Exact and approximate expressions were derived for cube-shaped
magnets for analysing the behaviour of this system. The approximate expression
is very simple and accurate over a large displacement range, and may be used for
cubical magnets of any size.

Four design criteria were imposed on the design in terms of the two variable de-
sign parameters: magnet size and gap between the fixed magnets. A technique for
explicitly mapping these constraints to a map of valid parameters was shown. Al-
lowable stroke and magnet size availability allow a design to be optimised using
this technique based on the required load bearing and resonance frequency.

The magnetic isolator is weakly nonlinear with a distorted phase plot compared to
a linear system; the variance gain shows a resonance peak skewed into the lower
frequencies. These nonlinearities only become apparent at larger vibration ampli-
tudes at equilibrium positions that are close to the quasi–zero stiffness position
(that is, large measures of nonlinearity). Provided the system remains stable, the
nonlinearities are not detrimental to the frequency response of the system.

The vibration isolator described in this paper is therefore suitable for precision
applications where low resonance frequencies are required. The design is scalable
in that many such isolators may be used in parallel to achieve greater load bearing
even if only small magnets are available. The inherent low damping of the system
results in good high frequency performance, but low frequency disturbances will
result in large outputs due to the high resonance peak. This effect can be mitigated
by the application of sky-hook damping to the system.

A Analytical force and stiffness terms

The function fm(l) is the simplification of Akoun and Yonnet’s [22] formula after
the assumptions given in section 2, where J1 and J2 are the magnetisations of the
two magnets and µ0 = 4π×10−7 is the ‘permeability of the vacuum’:

fm(l) =
J1J2

πµ0
f̄m(l) (A.1)
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where

f̄m(l) = [−2+ l] · |−2+ l|−2l|l|+[2+ l] · |2+ l|+4l
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√

12−4l + l2

+[−4−2l]
√

8+4l + l2 +[2+ l]
√

12+4l + l2

+2
[

4arctan
(

4
l
√

8+ l2

)
+2arctan

(
4

[2− l]
√

12−4l + l2

)
−2arctan

(
4

[2+ l]
√

12+4l + l2

)
+2l log

(
−2+

√
4+ l2

)
−2l log

(
2+
√

4+ l2
)
−2l log

(
−2+

√
8+ l2

)
+2l log

(
2+
√

8+ l2
)

+2log
(
−2+

√
8−4l + l2

)
− l log

(
−2+

√
8−4l + l2

)
−2log

(
2+
√

8−4l + l2
)

+ l log
(

2+
√

8−4l + l2
)
−2log

(
−2+

√
12−4l + l2

)
+ l log

(
−2+

√
12−4l + l2

)
+2log

(
2+
√

12−4l + l2
)

− l log
(

2+
√

12−4l + l2
)
−2log

(
−2+

√
8+4l + l2

)
− l log

(
−2+

√
8+4l + l2

)
+2log

(
2+
√

8+4l + l2
)

+ l log
(

2+
√

8+4l + l2
)

+2log
(
−2+

√
12+4l + l2

)
+ l log

(
−2+

√
12+4l + l2

)
−2log

(
2+
√

12+4l + l2
)

−l log
(

2+
√

12+4l + l2
)]

(A.2)

The normalised stiffness km(l) is calculated by differentiating the force equations
given by Akoun and Yonnet [22] before simplifying as with the force terms above:

km(l) =−2J1J2

πµ0
k̄m(l) (A.3)
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